Injectable microcarriers as human mesenchymal stem cell support and their application for cartilage and degenerated intervertebral disc repair.
نویسندگان
چکیده
Degeneration of the intervertebral disc (IVD) is a progressive and chronic process, and the high incidence of discogenic disorders calls for new therapeutic approaches, such as cell-based therapies using three dimensional cultures and mesenchymal stem cells (MSC), which can differentiate to chondrogenic- and IVD-lineages. Here, we investigated the growth and differentiation of human MSC culture on biodegradable collagen scaffolds in order to obtain an injectable suspension. Commercially available wound dressings were downsized to dimensions between 100 and 1500 μm and seeded with freshly isolated or early passages MSC. Proliferation rate and chondrogenic differentiation potential was tested at oxygenation levels of 2%, 5%, 10% and 21% in static and dynamic cultures. Evaluation methods included cell viability test, disc marker genes expression (aggrecan, collagen type I and type II), histological detection of proteoglycans and immunohistochemical analysis. On microcarriers, freshly isolated MSC had lower proliferation rate and chondrogenic differentiation potential compared with early passages MSC. Proliferation of MSC was significantly increased 1.7-fold at 5% oxygen level and in combination with dynamic culture was further increased to 2.3-fold, with respect to normoxia. Chondrogenesis was positively affected by 2% and 5% hypoxia, as shown by increased transcription levels and protein expression of collagen type II and proteoglycan accumulation in static cultures, while it was inhibited in dynamic cultures. Collagen type I and aggrecan expression were not affected by hypoxia. In conclusion, collagen based microcarriers are a suitable support for in vitro MSC growth and chondrogenesis especially when cultured at 5% oxygen level.
منابع مشابه
Conditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage
Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...
متن کاملCharacteristics of Stem Cells Derived from the Degenerated Human Intervertebral Disc Cartilage Endplate
Mesenchymal stem cells (MSCs) derived from adult tissues are an important candidate for cell-based therapies and regenerative medicine due to their multipotential differentiation capability. MSCs have been identified in many adult tissues but have not reported in the human intervertebral disc cartilage endplate (CEP). The initial purpose of this study was to determine whether MSCs exist in the ...
متن کاملCo-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration
Background: Cell-based treatment approach using differentiated mesenchymal stem cells (MSCs) and mature chondrocytes has been considered as an advanced treatment for cartilage repair. We investigated the differentiated level of these two cell types that is crucial for their repair capacity for cartilage defect at a co-culture micro mass system. Methods: Passaged-2 MSCs isolated from the mouse b...
متن کاملDegenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy
Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...
متن کاملDevelopment and Application of Mesenchymal Stem Cell-derived Exosomes in Cartilage Tissue Repair
Background and Aim: Cartilage defects treatment is one of the most common clinical challenges in orthopedics. The current management techniques help to control symptom and joint function. The cell-free approach to cartilage regeneration through paracrine action has been considered to accelerate and facilitate the healing process and the importance of its urgency in the recovery of military pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 29 شماره
صفحات -
تاریخ انتشار 2015